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Figure 1. Indutivo recognizes the tap of a conductive objects on a smartwatch, such as (a) a dime, or (b) finger. It can sense (c) the 
rotation of a bottle cap instrumented using copper tape, (d) hinge of a metal credit card, and (e) slide of the handle of a table knife. 
ABSTRACT 
We present Indutivo, a contact-based inductive sensing 
technique for contextual interactions. Our technique 
recognizes conductive objects (metallic primarily) that are 
commonly found in households and daily environments, as 
well as their individual movements when placed against the 
sensor. These movements include sliding, hinging, and 
rotation. We describe our sensing principle and how we 
designed the size, shape, and layout of our sensor coils to 
optimize sensitivity, sensing range, recognition and tracking 
accuracy. Through several studies, we also demonstrated the 
performance of our proposed sensing technique in 
environments with varying levels of noise and interference 
conditions. We conclude by presenting demo applications on 
a smartwatch, as well as insights and lessons we learned from 
our experience.  
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INTRODUCTION 
Contextual interactions based on object recognition and 
manipulation have enormous potential in small wearable 
(e.g., smartwatches) or IoT devices (e.g., Amazon Echo, 
Nest Thermostat, Cortana Home Assistant), where input to 
these devices is generally difficult due to smaller form 
factors and the lack of effective input modalities [19, 31, 50, 
56]. However, precise object recognition and lateral 
movement (e.g., slide, hinge and rotation) detection remains 

challenging. For example, the existing technologies, such as 
RFID [23, 24] or electromagnetic-based [22, 49] approaches 
can detect and recognize objects but cannot sense object 
lateral movement precisely.   

In this paper, we propose a new sensing technique based on 
induction, to enable contact-based precise detection, 
classification, and manipulation of conductive objects 
(primarily metallic) commonly found in households and 
offices (such as utensils or small electronic devices). Our 
technique allows a user to tap a conductive object or their 
finger on a device (e.g., a smartwatch) to trigger an action. 
Once the object is detected, the user can use it for continuous 
1D input such as sliding, hinging, or rotating, depending on 
its physical affordance (Figure 1). With this technique, a 
context embedded item can be used to indicate a desired 
application followed by fluid continuous input without the 
need to switch input modalities.  

Our prototype (called Indutivo) contains an array of five 
spiral-shaped coils, whose size, shape, and layout were 
carefully designed to balance sensitivity, sensing range, 
recognition and tracking accuracy. We developed the sensor 
in a smartwatch form factor with a software system and 
tested it using 23 daily objects that were a mix of conductive 
and non-conductive objects which were instrumented using 
low-cost copper tape, as well as a finger, in five everyday 
environments (e.g. office, living room). Results from ten 
participants showed a 95.8% real-time classification 
accuracy. Additionally, our study revealed that the system 
could track the slide of objects with an average error of 0.82 
mm. It tracked an objects’ hinge movement between 0° and 
60° against the sensor with an average error of 1.6°. The 
system could also detect eight discrete rotational directions 
of an instrumented bottle cap, with a 93.3% accuracy. We 
also provide insights into the robustness of this approach 
under common environmental noises.  

The contributions of this work include (1) a contact-based 
inductive sensing technique for recognizing conductive 
objects and tracking their lateral movements (e.g., slide, 
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hinge and rotation) for continuous input; (2) a series of 
studies evaluating the accuracy of our sensing technique 
under normal and noisy environments; and (3) several 
applications using a smartwatch form factor to demonstrate 
the unique interactions enabled by our technique.  

RELATED WORK 
Our work intersects with the following areas of research.  

Object Identification and Motion Sensing  
Wearable devices’ built in sensors (e.g., accelerometer), 
were designed to detect the motion of the device to infer user 
activities (e.g., [5, 14]) instead of the motion of an input 
object. Many options exist for object recognition on devices 
like smartwatches even though most were developed for 
different computing platforms. RFID-based approaches are 
effective for object recognition, but the technology requires 
the object to be instrumented [6, 7, 17, 23, 24, 36, 43]. 
Capacitive NFCs [13] are similar, requiring the objects to be 
instrumented. Zanzibar [44] identifies instrumented objects 
place on its surface through NFC. Vision-based approaches 
can recognize tagged [9] or untagged objects [38] but 
camera-based approaches are power consuming.  

There are also many sensing techniques that do not require 
object instrumentation. For example, acoustics-based 
approaches (e.g. [34, 46]) leverage acoustics to recognize 
objects that can make sound. EM-Sense [21] recognizes 
electrical objects via electromagnetic signals. ViBand [20] 
recognizes objects that generate mechanical or motor-
powered vibrations. Radarcat [51] uses multi-channel radar 
signals to recognize electrical or non-electrical objects. 
Induction-based sensing techniques have also been used in 
object recognition. For example, Maekawa, et al. [26] used 
magnetic sensors and coils to recognize electrical objects. 
Wang, et al. [45] used magneto-inductive sensors to 
recognize electrical objects via electromagnetic radiation.  

Our approach is different in that it recognizes conductive 
objects (electrical or not), and is also capable of sensing 
object lateral movement, an ability that has not been 
demonstrated using existing sensing techniques. We chose to 
explore the induction-based approach due to its promise in 
both object recognition and lateral movement sensing.  
Input on Smartwatches 
We demonstrate our sensing technique on a smartwatch to 
showcase its unique ability to enrich interactions on small 
wearable devices. Within the current research, input on 
smartwatches is accomplished primarily using touch. Since 
the touchscreen is small, input space outside the touchscreen 
has received substantial attention in research. Existing 
approaches include using the watch band [35], bezel [4], and 
the watch case [30] as a touchpad. Duet [8] extends the input 
space to joint-device interactions with a smartphone. 
Another major approach explores using the space near the 
smartwatch for input. For example, SkinTrack [54] and 
AuraSense [56] sense finger movements on the skin of the 
wrist. Skin buttons [19] has virtual touch buttons on the wrist 

near the smartwatch. LumiWatch [47] integrates this work 
into a self-contained smartwatch implementation. Gesture 
Watch [18] uses proximity sensors to detect mid-air hand 
gestures above the touchscreen. Abracadabra [15] senses 
finger movements in and around the watch face.  

Another body of related research focuses on input using 
fingers (e.g., pinch) [1, 10, 16, 25, 40, 52] or hand gestures 
(e.g., fist) [10, 11, 37, 52] from the same-side hand (e.g., the 
hand wearing the smartwatch). For example, GestureWrist 
[37] uses capacitive sensors to detect the changes in forearm 
shape to infer hand postures. Fukui, et al. [11] and Ortega-
Avila et al. [32] achieved a similar set of gestures using an 
array of infrared photo reflectors placed inside the wristband. 
SensIR [27] uses a similar method but achieves significant 
improvements on accuracy and gesture quantity. WristFlex 
[10] and Tomo [52, 53] showed that sensing same-side hand 
postures can be achieved using force resisters or electrical 
impedance tomography (EIT) sensors. WristWhirl [12] 
senses input from wrist whirling using infrared proximity 
sensors on the watchband. Soli [25] detects in-air finger 
gestures based on optimized millimeter-wave radar.  

One-dimensional continuous input can be sensed on a 
smartwatch using a digital crown. Recent commercial 
developments have also shown the success of a rotating bezel 
[2]. A research version of such an interface can be found in 
Pasquero, et al.’s work [33]. Xiao, et al. extended this idea 
by proposing twisting, tilting, and pushing the entire watch 
face when attached to a joystick-like mount [48]. Doppio 
[42] allows a user to use a second watch face as an input 
device that can be attached, hinged, or slid around a base 
watch face. We see that Indutivo can be a good addition to 
these existing techniques with its unique ability in object 
sensing and lateral movement detection for precise control. 
INTERACTION TECHNIQUES 
Users can interact with Indutivo using contact-based 
interactions (e.g., tapping, hinging, sliding, or rotating a 
conductive object) that have been previously studied and 
proven to be effective and usable [42]. We use a smartwatch 
as an example to demonstrate Indutivo interactions. In our 
current implementation, objects are required to be in contact 
with the sensor, primarily due to the relatively short sensing 
distance (see limitations about how to mitigate this).  

 
Figure 2. Indutivo interactions. 

Tap. The user taps an object on the east side of the 
smartwatch (Figure 2a). The smartwatch recognizes the 
object and triggers an action. Tapping a different object 
triggers a different action. This can be used as a shortcut to 
quickly launch a user’s favorite application. Tapping at 
different locations along the east side of the smartwatch can 
also trigger different actions. 



 

 

Slide. Once recognized, a user can slide an object along the 
side of the watch for continuous 1D input (Figure 2b). It is a 
variation of Doppio’s peek gesture, where the interaction is 
carried out on the side instead of on top of the touchscreen. 
The contact area of the object should be relatively planer in 
order to have control of the sliding movement. 

Hinge. In addition to slide, the user can hinge a thin, flat 
object (e.g., the handle of a table knife) by rotating it along 
the edge of the smartwatch, visually resembling a hinged 
door (Figure 2c). Hinge also provides continuous 1D input, 
but in a different dimension, which increases the input space 
for different application needs.  

Rotation. The user can also rotate a cylindrical object (e.g., a 
bottle cap or marker pen) against the side of the smartwatch, 
as if they were rotating a knob (Figure 2d). This is a variation 
of Doppio’s stacked rotation, where the interaction is carried 
out on the side to avoid occluding the screen.  

Environmental vs. Artificial Conductive Objective 
We classify different types of conductive objects as either 
environmental or artificial. Environmental conductive 
objects are those that naturally occur in a user’s home or 
office environment, such as a USB stick or table knife. 
Artificial conductive objects are objects instrumented using 
a conductive marker in the contact area (Figure 3). By 
pressing the marker to the sensor, the associated object can 
be recognized. This enabled us to increase the scope of 
recognition. We discovered that a simple way to create a 
conductive marker is to use a piece of copper tape. This 
works for both conductive and non-conductive objects. For 
example, instrumenting a book using a copper tape allows 
the book to be used as an input device (Figure 3a). Attaching 
the copper tape on a conductive object changes the 
inductance footprint of the object, creating a new input 
device using the same object (Figure 3b). Different patterns 
can be used to design the shape of the copper tape. This 
further increases the vocabulary of the conductive marker. 

 
Figure 3. Left: (a) conductive markers created using copper 
tape. (b) table knives with and without instrumentation. Right: 
the inductive footprints of the corresponding objects (Y-axis 
shows raw sensor data on a scale from 0 to 3×107 in all figures).  

SENSING PRINCIPLE 
Inductive sensing is a sensing technology that enables low-
cost, high-resolution sensing of conductive (mostly metallic) 
objects. Its sensing principle is based on Faraday's law of 
induction – a current-carrying conductor can “induce” a 
current to flow in a second conductor. More specifically, the 

alternating electrical currents flowing through an inductor 
(e.g., a wound coil of the sensor) can generate an 
electromagnetic field. If a conductive object is brought into 
the vicinity of the inductor, the electromagnetic field will 
induce a circulating current (called an eddy current) on the 
surface of the target object. In turn, the induced eddy current 
will generate its own electromagnetic field, which opposes 
the original field generated by the inductor. As such, the 
sensor coil and the target form two coupled inductors, whose 
coupling affects the resonant frequency of the L-C resonator 
of the inductive sensor. 

An important property of the resonant circuit is the ability to 
resonate at a specific frequency or resonant frequency (𝑓𝑓0), 
which can be described as a function of inductance (L) and 
capacitance (C) of the L-C resonator: 
                                      𝑓𝑓0 = 1

2𝜋𝜋√𝐿𝐿𝐿𝐿
                                    (1) 

The effect of the field disturbance caused by approximating 
target object results in a shift of coil inductance, which can 
be observed as a shift in the resonant frequency. As both 𝑓𝑓0 
and C are known, the resulting inductance of the coil can be 
calculated using formula (1). The inductance of the sensor 
coil is affected by the resistivity, size, and shape of the target 
object and the distance between the sensor coil and target 
object. It is thus possible to infer the material (via resistivity), 
size, shape and distance of the target by measuring the 
resonant frequency of the L-C resonator.   

Most conductive objects have capacitance and inductance, 
and both properties affect the resonant frequency. The effect 
of inductance dominates that of capacitance with most 
metallic objects. In contrast, the effect of capacitance 
becomes dominant with most non-metallic conductive 
objects, such as a finger. The latter was used in Touché [41] 
to distinguish between different ways a hand touches an 
instrumented household object.  

Our system does not rely on capacitance for object 
recognition because capacitance is largely affected by the 
user’s body, which acts like a big capacitor and diminishes 
the effect on capacitance caused by an object. As such, our 
technique works better with metallic objects (e.g., keys or 
utensils) or those mainly composed of metallic objects (e.g., 
electronic devices). Non-metallic conductive objects are 
mostly plant or food (e.g., fruits), and thus less suitable to be 
used for precise input. Our system can differentiate a finger 
from conductive objects due to the effects of capacitance and 
not inductance, again because the body acts as a capacitor. 
HARDWARE IMPLEMENTATION 
We created a prototype using customized hardware and 
software. This section presents our implementation details. 
Coil Design 
The key to the success of an inductive sensor is the design of 
the coils, as it affects the sensitivity, sensing range, 
recognition and tracking accuracy. The coils need to be 
placed along the side of a smartwatch, thus limiting our 
design to a rectangular region of approximately 10 × 40 mm 



 

 

(e.g., approximately the size of a commercial smartwatch). 
Our design considers the following parameters: (1) coil 
shape, (2) coil size and arrangement, and (3) coil inductance.  

Coil Shape. The coil needs to be spiraled with two ends 
connecting to the sensor. The shape of the coil mainly affects 
sensing distance, which is important for tracking the hinge 
movement. In principle, the coil can be made into any shape, 
but the most common are a square, hexagon, octagon, and 
circle (Figure 4). The circular coil has the best quality factor 
Q and lowest series resistance [3], allowing the largest 
possible sensing distance among the different options [28]. 
However, the tradeoff is that the sensor value of a circular 
coil is not as linearly proportional to the distance to the target 
as that of the other shapes, such as the rectangular coil. We 
chose the circular shape to maximize sensing distance. 

Coil Size and Arrangement. In comparison to its shape, the 
physical size of the coil has an even larger effect on sensing 
distance [3]. Larger coils provide longer sensing distances. 
In our case, the diameter of the coils is limited by the height 
of a smartwatch, as well as the number of coils that are 
needed in the sensor. The size, shape, and lateral movement 
of an object against the sensor can be better sensed with an 
array of small but clustered coils (e.g., 3 × 15). However, 
hinge can be harder to detect with small coils, as our tests 
with several daily objects using the inductance to digital 
converter from TI (LDC1614) suggested that the maximum 
sensing distance of a circular coil is approximately 1 to 1.5 
times of its diameter. To balance the size and quantity of the 
coils, our final design used a linear array of five 7.39 mm 
coils with a 0.76 mm interval between each adjacent pair of 
the coils.  

 
Figure 4. Four common designs of planar spiral coil: (a) 

square, (b) hexagon, (c) octagon, and (d) circle. dout and din are 
outer and inner diameters respectively. 

Coil Inductance. Unlike size and shape, coil inductance 
influences the intensity of the electromagnetic field, thus 
affecting sensor sensitivity to the small changes in the 
resonate frequency caused by objects of different materials, 
sizes, or shapes [3]. Figure 5 shows the relationship between 
coil inductance and the corresponding resonant frequency at 
a circuit capacitance value of 330 pF (suggested by Texas 
Instrument). It shows that small changes in the resonant 
frequency are more pronounced (e.g., steeper curve) with 
low inductances. In other words, the coil with a low 
inductance (or high resonant frequency) is preferred since it 
is more sensitive to the small shift in the resonant frequency.  

Therefore, for each design solution, we calculated the 
corresponding inductance value and identify the one with the 

lowest inductance. The inductance of a singular layer of coil 
is determined by a number of parameters, such as number of 

 
Figure 5. Resonant frequency shown by coil inductance. 

turns or inner diameter, and can be calculated using the 
current sheet approximation formula [29]: 
           𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜇𝜇𝑛𝑛

2𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐1
2

(ln �𝑐𝑐2
𝜌𝜌
� + 𝑐𝑐3𝜌𝜌 + 𝑐𝑐4𝜌𝜌2)  (2) 

where  
• 𝜇𝜇 is the permeability of free space, 4π × 10−7 
• 𝑛𝑛 is the number of turns of the coil 
• 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 is the average diameter of the turns, which is 

defined as (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑑𝑑𝑖𝑖𝑖𝑖) / 2 
• 𝜌𝜌  represents the fill ratio of the coil, which is 

defined as (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑑𝑑𝑖𝑖𝑖𝑖)/ (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑑𝑑𝑖𝑖𝑖𝑖)    
• c𝑖𝑖 are geometry dependent parameters (for a circle, 

c1 = 1.0, c2 = 2.46, c3 = 0, c4 = 0.2) 

For multi-layer coils, the total inductance of the coils in 
series can be calculated using the following formulas [39]: 
           𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  ∑ 𝐿𝐿𝑖𝑖 + 2 ∙ (∑ ∑ 𝑀𝑀𝑗𝑗,𝑚𝑚

𝑁𝑁
𝑚𝑚=𝑗𝑗+1

𝑁𝑁−1
𝑗𝑗=1 )𝑁𝑁

𝑖𝑖=1   (3) 

where 𝑀𝑀𝑗𝑗,𝑚𝑚  is the mutual inductance between the coils, 
which is defined as 𝑘𝑘 ∙ �𝐿𝐿1 ∙ 𝐿𝐿2 . The parameter 𝑘𝑘  is a 
measure of the flux linkage between the coils, whose value 
varies between 0 and 1. The value of 𝑘𝑘  can be estimated 
using the formula proposed by Jonsenser Zhao [55]: 
             𝑘𝑘 = 𝑛𝑛2

0.64∗(1.67𝑛𝑛2−5.84𝑛𝑛+65)∗(𝐴𝐴𝑥𝑥3−𝐵𝐵𝑥𝑥2+𝐶𝐶𝐶𝐶+𝐷𝐷)
  (4) 

where 𝑥𝑥  is the distance in millimeters between the two 
adjacent layers and 𝑛𝑛  is the number of turns of the coil. 
𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷  are four constant parameters with the value of 
0.184, -0.525, 1.038, 1.001 respectively [55].  

Prior to designing a coil to maximize resonant frequency, it 
is important to understand that the upper bound of the 
resonant frequency is often limited by the working range of 
the inductance to digital converter. For example, the 
LDC1614 from TI supports a maximum resonant frequency 
of 10 MHz. Additionally, the signal stability of the 
inductance to digital converter may also limit the maximum 
resonant frequency. For example, our tests found that the 
readings of the LDC1614 became unstable when the resonant 
frequency exceeded 5 MHz. Therefore, we limited our 
exploration to strictly 5MHz.  

Considering that many PCB shops print coil traces in 6 mils 
(0.15mm) wide with a minimum 6 mil interval between two 
adjacent traces, only four designs satisfied our needs. Table 



 

 

1 shows these designs, where 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑑𝑑𝑖𝑖𝑖𝑖 are the diameter 
and inner diameter of the coils and Turns are the number of 
circles. Amongst these designs, we picked one that had the  

 lowest inductance (shown in the first row). 

Table 1. Coil designs that satisfied our needs. The one 
highlighted in the first row was chosen. 

Sensing Board 
The coils are connected to two LDC1614 evaluation boards 
from Texas Instruments. Each board has a 28-bit inductance 
to digital converter (e.g., LDC1614) and a MSP430 
microcontroller, used to interface the LDC1614 chip to a host 
computer. The LDC1614 chip has four output channels, one 
for each coil. It works by monitoring the resonant frequency 
of a L-C resonator and reports the corresponding inductance 
values. The sensing chip is developed to primarily respond 
to the inductance effect of a metallic object. As such, the 
capacitive effect of human body (e.g., hand flex) is 
neglectable. The system’s sampling rate was set to 50Hz. 
According to datasheet, LDC1614 and coils consumes 10 
mW when working and 0.1 mW in sleep mode. In our current 
implementation, the power consumption of each module is 
103.8 mW, primarily from the MCU. The final prototype is 
shown in Figure 6.  

 
Figure 6. Left: LDC1614 evaluation boards and our custom-

designed sensor coil. Right: Indutivo prototype.  

OBJECT RECOGNITION & SENSING SLIDE, HINGE, AND 
ROTATION 
Our prototype recognizes the contacted object and senses its 
manipulations (e.g., slide, hinge, or rotation), if any.  

Object Recognition 
Real-time object recognition was implemented by comparing 
the sensor data with a pre-collected database of labelled 
references. The closest match is used as the result.   

Upon an object tapping anywhere on the sensor, the sensor 
reports a 1D array of five consecutive inductance values, one 
from each coil, representing the inductance footprint of the 
object (Figure 7 left). Aside from object material, the sensor 
data also encodes some low-resolution geometry information 
of the object’s contact area (e.g., size and shape), which is 
also useful for recognizing objects. The reference footprint 
of an object is a scan of the object’s contact area, composed 
of a curve representation of 1D continuous inductance values 

across the object’s contact area, representing a high-
resolution inductance footprint of the object (Figure 7 left).  

Ideally, the scan can be carried out using a single coil and a 
tracking mechanism (e.g., VICON) precisely measuring the 
movement of the coil. This provides one-to-one mapping 
between a location inside the contact area and its 
corresponding inductance value. An alternative approach is 
to scan without tracking the position of the coil, which results 
in a similar curve, but on a different scale on the x-axis (e.g., 
time) caused by the speed of the coil movement. Assuming 
the coil is moved in a constant speed, the collected data can 
be converted from the time domain to the physical size 
domain using a scale factor 𝑆𝑆 =  |𝑡𝑡1− 𝑡𝑡2|

|𝑑𝑑1− 𝑑𝑑2|
  if the 

corresponding coil locations (e.g., d1 and d2) of two 
randomly chosen times (e.g., t1 and t2) are known (e.g., 
measured manually). With this approach, testing and 
reference footprints can be compared in the same scale.  

 
Figure 7. Left: inductance footprint of type-C adaptor shown in 
orange bars; reference footprint of the same object shown in 
blue. Right: ten scans of the reference footprint of Book 3. 

We scanned the object by hand with the device wearing on 
the wrist. Since the consistency of the scanning speed cannot 
be guaranteed using the hand, we collected ten reference 
footprints for each object to accommodate the variance in 
scanning speed (Figure 7 Right).  All reference footprints 
were scaled using the scale factor calculated based on the 
first scan. Naturally, scanning the object by hand creates 
errors in the resulting mapping between the inductance and 
the corresponding location in the object’s contact area. 
However, our study revealed that such errors did not cause 
significant issues in recognizing objects and sensing the 
sliding movement. Finally, missing points between two 
adjacent samples in the reference footprint were interpreted 
linearly.  

An important feature of the inductance footprint is encoding 
the length of the object’s contact area through the span of the 
curve. However, such information is missing if the contact 
area is smaller than a coil (e.g., the barrel of the bottle cap), 
in which case, we scaled the footprint to match the diameter 
of the coil. While the length is no longer shown by the span 
of the curve, it is still reflected by the inductance value.  

Before we compared a 5-pixel testing footprint with the 
references, we scaled them to the same scale. The final 
prediction was made using the k-nearest neighbors algorithm 
(KNN with k = 8), where for the testing footprint, we iterated 

𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐 
(mm) 

𝒅𝒅𝒊𝒊𝒊𝒊 
(mm) 

Layers Turns Inductance 
(uH) 

Frequency 
(MHz) 

7.39 2.21 4 8 3.56 4.64 
7.39 1.60 4 9 4.0 4.38 
7.39 0.99 4 10 4.31 4.22 
7.39 0.38 4 11 4.49 4.14 



 

 

through all references in the database and calculated the 
smallest distance to each reference using: 
                           min

𝑥𝑥
∑ |𝑓𝑓(𝑥𝑥 + 𝑑𝑑 × 𝑖𝑖)4
𝑖𝑖=0 − 𝑦𝑦𝑖𝑖|                 (5) 

where x is the location inside the object’s contact area, d is 
the distance between two adjacent coils (e.g., 8.15 mm), yi is 
the observed inductance value, and f is the reference 
footprint. The prediction result was made by majority voting 
based on the top eight candidates, ranked based on the 
similarity to the testing footprint. Once the object is 
identified, its location within the sensor is also known. 

To maximize recognition accuracy, the object’s contact area 
was required to be exposed to the sensor as much as possible. 
For example, the contact area needs to be inside the sensor if 
the object is smaller than the sensor. Otherwise, the sensor 
must be fully covered by the object. The object’s contact 
surface should also be relatively planar, such that stable 
contact can be made against the sensor. How an object is in 
contact with the sensor may affect the geometry of the 
contact area, thus resulting in different inductance footprints. 
This enables new interactions but may cause ID collision. 
Despite these tradeoffs, the inductance footprint provides a 
reliable indication of different objects (see studies), making 
it possible to maintain a shared database of common objects. 
Sensing Slide 
After the object is tapped and predicted, its sliding movement 
can be detected by sensing the shift of the position of its 
corresponding reference footprint over the sensors (Figure 
8). The center of the reference footprint of the object was 
used as the location of the object if: (1) it was smaller than 
the sensor or (2) the object itself was instrumented using 
copper tape. In the case of the object being larger than the 
sensor, sliding was carried out by tracking the movement of 
an end of that object (e.g., the end of the handle of a table 
knife). We set the northern end of the sensor to be the origin 
of the sensor’s coordinate system (e.g., x = 0), which was 
manually specified for each object by tapping the object or 
its edge on the center of the northern most coil. For each of 
the ten reference footprints of the contacted object, we found 
its location over the sensor using: 
                  argmin

𝑥𝑥
(∑ |𝑓𝑓(𝑥𝑥 + 𝑑𝑑 × 𝑖𝑖)4

𝑖𝑖=0 − 𝑦𝑦𝑖𝑖|) − 𝑥𝑥0            (6) 

where x0 is the origin. The final prediction of the object’s 
location is the average location of the top five candidates 
ranked based on the similarity to the testing footprint. The 
system supports both absolute and relative input.  

 
Figure 8. The position of the reference footprint indicates the 
position of the object inside the sensor. 

Sensing Hinge 
We developed a database of labelled references for sensing 
hinging angle by manually hinging open a flat object in a 
relatively constant speed, from 0° (e.g., object stands 
perpendicular to the wrist) to 60°. We did not go beyond 60° 
as it exceeds the sensing range for many objects. The 
collected data contains five inductance values, one from each 
coil and a corresponding time stamp. The data was then 
converted from the time domain to the hinging angle domain 
using a similar method described previously by using two 
reference hinging angles (e.g., 10° and 45°) measured 
manually using a protractor. For each object, we collected 
hinge movement data ten times. 

When testing, the inductance values from the coils were used 
against the labelled data from each scan, where we found a 
local optimized prediction using: 
                             argmin

𝑥𝑥
∑ |𝑓𝑓𝑖𝑖(𝑥𝑥) − 𝑦𝑦𝑖𝑖|4
𝑖𝑖=0                       (7) 

where x is the hinging angle, fi is the reference mapping 
collected from coil i, and yi is the observed inductance value 
at coil i. The final prediction was the average angle of the top 
five candidates ranked based on similarity.  

Similar to slide, hinge also works with both environmental 
and artificial conductive objects, but objects are required to 
be flat in order to provide a relatively stable hinging axis. 
Note that the location of the object inside the sensor is 
known, thus it is possible for users to trigger different actions 
by hinging at different locations. We only trained and tested 
hinge closer to the center of the sensor, but the reference data 
is independent of where it is collected, because the footprint 
can be shifted along the sensor coordinate. Slide and hinge 
can be uniquely identified via examining signal data. For 
example, with hinge, changes in the signal from different 
coils are similar (e.g. all increase) while signal from different 
coils changes sequentially with slide. 

Sensing Rotation 
Unlike slide and hinge, rotation only works with artificial 
conductive objects. To enable rotation, we placed a strip of 
copper tape along the barrel of a bottle cap. The width of the 
copper tape gradually increases to allow the sensor to pick 
up the cap’s orientation based on the strength of the 
inductance signal. Our initial test suggested that this setup 
only works when the cap is rotated around a fixed axis, which 
cannot be guaranteed when using the hand. We thus decided 
to only support eight discrete levels (or wedges) of rotational 
directions using a staircase pattern, where each section is 12 
mm long with a 1 mm increment (Figure 14 c). In this 
manner, each wedge on the cap was treated as an “object” in 
the reference database. Thus, detecting the rotation is simply 
detecting these “objects” using KNN.  

EVALUATION 1 – OBJECT RECOGNITION  
The goal of this study was to validate the object recognition 
accuracy of the proposed contact-based sensing approach, 
and its robustness across various locations as well as against 
individual variance among different users. 



 

 

Participants 
Ten right-handed participants (average age: 22.6, two 
female) were recruited to participate in this study. 
Participants wore the prototype on their left hand. 

Objects 
We tested 23 objects, classified into four types: large or small 
conductive objects and instrumented conductive or non-
conductive objects (Figure 9). Large conductive objects are 
objects whose contact area is larger than the sensor. Some 
are metallic, while others are electronic devices with built-in  

   
 Figure 9. Tested objects shown by type, how they are in 

contact with the sensor, and their reference footprints (one 
scan picked randomly from the database). 

metallic components. For small conductive objects, the 
contact area is smaller than the sensor. Instrumented 
conductive objects are conductive objects with a contact area 
instrumented using a strip of copper tape that is 10 mm wide. 
Instrumented non-conductive objects are non-conductive 
objects with the contact areas instrumented using copper tape 
with different patterns. Figure 9 also shows how an object is 
held against the sensor for both training and testing.  

Study Procedure 
One week prior to our study, references were collected with 
the sensor worn on the left hand by a volunteer and the 
system powered by a wall outlet (earth ground). We 
demonstrated to the volunteer which part of the objects to 
scan and how to scan in a relatively constant speed. No other 
instructions or training were given. Ten references were 
sampled for each object and the volunteer was not recruited 
again in our final study. The bottle cap was trained and tested 
using wedge 3, randomly picked from the eight options. 

Prior to the start of the study, participants were briefly shown 
how to use each object. They understood that the object’s 
contact area needed to be exposed to the sensor as much as 
possible. No practice trial was given. The study protocol is 
similar to the one used in [20, 49], where participants 
conducted a live object recognition study  with all 23 objects 
in five living environments, including a living room, a 
kitchen, a computer desk with a laptop and monitor, a 
parking space outside a building, and inside a running car 
(Subaru Forester) with the radio, heater, and Bluetooth all 
switched on. The device was powered by a wall outlet when 
indoor and a battery (floating ground) when outside the 
building or in a car. The locations were randomized between 
participants. Within each location, objects were presented in 
a random order, appearing five times each in total. Real-time 
prediction results were recorded.  

 
Figure 10. Object confusion matrix across 23 objects and 10 

participants. Results are shown in percentage. 

Result 
Our system achieved an overall accuracy of 95.8% (s.e. = 
0.81%). Figure 10 shows the confusion matrix for all objects. 



 

 

Among all tested objects, 21 achieved an accuracy higher 
than 90%, despite purposeful inclusion of experimental 
procedures that typically impact recognition accuracy – no 
per-user calibration, no user training, and considerable time 
separation between the experiment and when the reference 
data was collected – which is very promising. We also found 
that power source (e.g., earth vs floating ground) had a 
neglectable effect on object recognition. The confusion 
matrix shows that the Kindle paperwhite (K) was sometimes 
misclassified as iPhone 6Plus Front (M). This is because both 
objects have a similar structure with built-in electronic 
components. Despite the components being different, our 
sensor was not able to distinguish between them reliably. 

The instrumented non-conductive objects were not 
significantly confused with each other. This is exciting given 
that the system separated them only using the conductive 
pattern. Book 3 (T) and Book 5 (V) achieved the lowest 
accuracy among all the objects, with 86% (s.e. = 4.96%) and 
88% (s.e. = 4.64%) accuracy respectively. Book 3 was 
mostly confused with the Instrumented Scissors (O). As 
shown in Figure 11 (left), the testing footprint (black dots) 
can sometimes have shorter distance to the reference 
footprint of Instrumented Scissors than that of its own. This 
happens when the book was held with a smaller hinging 
angle to the sensor, causing the signals to be weak. These 
types of errors can be mitigated by introducing more weight 
to the shape of the curve than the distance. Book 5 (V) was 
occasionally misclassified as a Type-C Adaptor (C). As 
shown in Figure 11 (right), this is primarily due to the 
similarity between the reference footprints. This type of error 
can be solved by using more distinguishable pattern designs.  

 
Figure 11. Illustrations of how KNN confused the testing 
footprints (black dots) with the other objects.  

Supplementary Study – Environmental Noise 
In principle, our system fails when the background EMI is 
close to its working frequency (4.63 to 4.94 MHz), which, to 
the best of our knowledge, is uncommon in daily 
environments. To investigate the robustness of the system 
under common environmental noises, we repeated the study 
with the same set of 23 objects in locations that were within 
10cm of a running microwave, WIFI router, and 3D printer. 
These are common sources of strong electromagnetic noises. 
With each device, objects were presented in a random order, 
appearing three times each in total. The study was carried out 
with a single participant (male, right-handed, 25 years old).  

The results showed a real-time recognition accuracy of 
100%. We further looked at the raw data and found no 
significant effect was caused by the tested electromagnetic 
noises. This again confirms the promise of our approach 
against common environmental noises.  

EVALUATION 2 –1D OBJECT MANIPULATION   
The goal of this study was to measure how accurate our 
system can sense sliding, hinging, and rotation actions. 
Reference data was collected by the same initial volunteer 
from our first study, also one week prior to this study. The 
study was carried out by a single participant (male, right-
handed, 21 years old) sitting at a computer desk. 

Slide  
To measure the sliding accuracy, we randomly picked one 
object from each category, including Dime, Credit Card, 
Instrumented Knife Handle, and Book 3. We also included 
Bottle Cap to investigate the effect of a smaller contact area 
on tracking accuracy. The study required the participant to 
wear our device on the wrist of their left hand, and slide each 
of the objects against the sensor three times. The sliding 
action needed to be completed from one end (e.g., origin) of 
the sensor to the other, with an approximate sliding distance 
of 40 mm. The participant stopped every 2 mm, and the 
experimenter recorded the ground truth, measured using a 
ruler mounted against the sensor (Figure 12 right). A 
computer recorded the predicted distance from the origin.  

Results 
We used average error distance (𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 ) to measure the 
sliding accuracy. The 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎  is defined as 1

𝑛𝑛
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1 , 

where 𝑦𝑦�𝑖𝑖  is predicted location, 𝑦𝑦𝑖𝑖  is ground truth, and 𝑛𝑛 is 
the number of trials (e.g., 21 locations × 3 repetitions).  

The results revealed that the 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 across all tested objects 
was less than 1 mm (e.g., 0.82 mm; s.e. = 0.17 mm). 
Specifically, the average error distance for Dime, Credit 
Card, Instrumented Knife Handle, Book 3 and Bottle Cap are 
0.45 mm (s.e. = 0.02 mm), 1.38 mm (s.e. = 0.11 mm), 0.65 
mm (s.e. = 0.15 mm), 1.17 mm (s.e. = 0.07 mm) and 0.47 
mm (s.e. = 0.07 mm) respectively. Contact size did not affect 
sliding accuracy, as the Bottle Cap received one of the 
highest accuracies amongst all tested objects. Book 3 
received a relatively low accuracy score. This is due to the 
imprecision of tracking the valley of the marker. The 
accuracy for Credit Card was also lower than the other tested 
objects, presumably because of its material. Certainly, more 
research is needed to investigate how object material may 
affect the sliding accuracy.  

 
Figure 12. Study apparatus for hinge (left) and slide (right). 



 

 

Hinge 
To measure the hinging accuracy, we picked thin, flat objects 
which included Credit Card, Table Knife, and Instrumented 
Table Knife. The Dime was excluded as it was too small to 
properly hinge. The Keychain Pendant was also excluded 
due to its uneven contour, as it does not provide a stable 
hinging axis. During the study, participants hinged open a 
tested object from 0° to 60° three times and stopped every 4° 
to allow the experimenter to record the ground truth using a 
protractor mounted on the watch (Figure 12 left). The 
predicted hinging angle was also recorded using a computer.  
Result 
We used average error distance (𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 ) to measure the 
hinging accuracy. The 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎is defined as 1

𝑛𝑛
∑ |𝑑̂𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖|𝑛𝑛
𝑖𝑖=1 , 

where 𝑑̂𝑑𝑖𝑖  is the predicted hinge degree, 𝑑𝑑𝑖𝑖  is the ground 
truth, and 𝑛𝑛 is the number of trials (e.g., 16 discrete angles × 
3 repetitions). 

 
Figure 13. The average error distance of the Credit Card shown 
by the sample angles. 

The 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 across all three tested objects was 1.64° (s.e. = 
0.37°). Specifically, the average error distance for Credit 
Card, Knife Handle, and Instrumented Knife Handle were 
1.53° (s.e. = 0.13°), 2.48° (s.e. = 0.19°), and 0.92° (s.e. = 
0.2°) respectively. The Instrumented Knife Handle had the 
highest accuracy, with its average error distance remaining 
less than 3°, even up to 80°. Most errors came from the 
angles away from the ones marked manually, when 
converting the reference data from the time domain to the 
hinging angle domain (e.g., 10° and 45°). Figure 13 shows 
such an example from Credit Card. While the accuracy is 
expected to increase with the increasing number of 
manually-marked angles, our result is still promising with 
the least amount of training efforts from a user. Hinging 
accuracy differed between different objects, also suggesting 
that more research is required to better understand how 
object material may affect the sliding accuracy. 

Rotation 
Rotation was tested with participant rotating the Bottle Cap 
(Figure 14 b) three times at any location inside the sensor. 
Participant stopped every 9°, and the system recorded the 
predicted wedge.  
Result  
The average classification accuracy of the eight wedges was 
93% (s.e. = 4.37%). The confusion matrix in Figure 14 shows 
that most classification errors occurred around the borders of 
the wedges. Interestingly, Wedge 7 was confused with 
Wedge 2 for 20% of the time. This is because when the 
samples were picked from a location closed to the Wedge 1 
border, the inductance value got evened to a level similar to 

 
Figure 14. Left: confusion Matrix for the rotation task. Right: 

the pattern of the conductive marker for the bottle cap. 

that of Wedge 2. Similarly, 20% confusion was found 
between Wedge 7 and Wedge 6 at the border. This is true for 
the other instances where error occurred and is considered to 
be acceptable for coarse-grained rotation tasks.   

 
Figure 15. Indutivo demo applications: (a) video player, (b) 

aircraft game, (c) brick breaker game, (d) audio book app, (e) 
fitness app, (f) setting voice mode app. 

DEMO APPLICATIONS 
We implemented six demo applications on a smartwatch to 
showcase our contact-based sensing technique. Our first 
application is a video player, which shows Forward, 
Play/Pause, and Backward buttons on the eastern side of the 
screen. Tapping a dime on the sensor at the appropriate 
location near a button, triggers the corresponding action 
(Figure 15 a). This helps avoid a finger occluding the screen 
and false input from a hand accidentally touching the sensor. 
Our second application is a top-down aircraft game. With 
this game, the instrumented bottle cap can be used to launch 
the app and as a rotating controller to steer the aircraft 
(Figure 15 b). Using this approach, the screen space will not 
be occluded by a controller on the interface or a user’s finger. 
This example shows that a user can use cheap objects and 
materials to create their own novel smartwatch controllers or 
input devices. Our third application is a brick breaker game. 
Like many other games, this game is difficult to play on a 
smartwatch due to a finger occluding the screen space when 
dragging a paddle. We show that the paddle can be precisely 
positioned using a binder clip as a physical handle (Figure 15 
c). The fourth application associates a user’s books (or 
associated conductive markers) with audio copies stored on 
their smartwatch. A user can tap the book on the smartwatch 



 

 

to play the audio or download it if it doesn’t exist on the 
smartwatch (Figure 15 d). This provides an alternative means 
to navigating and searching for the desired audio to play. The 
fifth application is a fitness app, which encourages the user 
to enter calorie information during a meal.  With our app, the 
user can enter an estimated calorie value by hinging the 
handle of a table knife, to avoid touching the screen when 
using a finger that is messy from eating their meal (Figure 15 
e). Finally, switching between different modes on a 
smartwatch can be slow on the current smartwatches. With 
our last application, a user can use the pendant of their car 
keys to quickly activate voice mode on the smartwatch 
before starting a vehicle (Figure 15 f).  

LIMITATIONS AND FUTURE WORK 
In this section, we discuss the lessons and insights we learned 
from our experience. We also present limitations of our work 
and directions for future research. 

Contact area. Our current implementation requires objects to 
be in contact with the sensor, primarily due to the relatively 
short sensing distance. More investigation and work can be 
done in increasing the sensing distance since industry (e.g., 
TI) has shown promising results in achieving a longer range. 
Ideally, objects can be sensed and manipulated anywhere on 
the back of the hand, without the need of touching the 
smartwatch. We expect this to enable many new applications 
on smartwatches.  

Additionally, tapping the object against the sensor allows the 
contact area to be relatively stable and consistent across 
different times of use. Objects without a planar contact 
surface can be challenging to sense because changes in the 
contact area may affect the inductance footprint. However, 
this challenge can be overcome with additional reference 
data since the change in the inductance footprint is consistent 
with respect to how the object’s contact area may change. 
Similarly, sensing the hinge movement of an object without 
a stable axis to hinge around (e.g., our keychain pendent) is 
also possible with better training. The potential tradeoff is 
that this may introduce confusion between similar objects.  

Our sensor works better with objects whose contact area is 
smaller than the sensor but bigger than a coil because 
otherwise, the material of an object becomes the primary 
component to determine recognition capability. Objects that 
are smaller than the sensor coil can be the most challenging 
to sense, as the signal can be too small to detect, especially 
when the object is placed in-between two adjacent coils.  

Sensing non-conductive objects. Our method does not work 
with non-conductive objects without instrumentation. This is 
a limitation of the induction-based approach. A hybrid 
approach integrating inductive sensing with the other types 
of sensing techniques, such as radar-based techniques, is an 
interesting future direction to explore to come up with a 
method that can sense both conductive and non-conductive 
objects and sense their movements.  

Interactions. In some smartwatch designs, a knob or button 
(e.g., digital crown) is placed on the east-facing side of the 
watch, which conflicts with our sensor placement as well as 
our interaction techniques. This can be compromised by 
adjusting the sensor and knob placement or by placing it on 
different sides of the smartwatch. For example, the 
interactions could be carried out on the north and south side 
of the smartwatch, as they are not hindered by the arm or 
hand. Such sensor placement could create opportunities for 
new types of interactions that warrant careful future studies.  

Beyond smartwatches. Inductive sensing has potential for 
many other smaller devices like smart bracelets, jewelry, or 
smart IoTs. For example, different objects can quickly 
trigger different functions on an Amazon Echo (e.g., tap the 
book to play the book audio). Users can also quickly switch 
between different modes of a digital clock and precisely 
adjust their corresponding values (e.g., set the time) by 
manipulating the object. Indutivo sensor input could also be 
integrated into various devices that require security 
passwords by assigning 1D gestural input with specific 
conductive objects as a user’s password. Further, inductive 
sensing can also be added on smart rings, supporting 
contextual input by simply touching different objects. Smart 
tables could also potentially benefit from this sensing 
technique by identifying various objects that physically 
contact it, triggering specific effects (e.g. touching a pen to 
the table allows a user to draw, touching a brush could trigger 
painting, etc.). With this type of input, we can save the 
physical space of buttons or knob on devices and provide 
richer interactions. Our future investigations will focus on 
these types of applications and look to overcome challenges 
on devices that go beyond smartwatches.   
CONCLUSION 
This paper describes a contact-based, inductive sensing 
approach to recognize daily conductive objects and sense an 
object sliding, hinging, and rotating against the sensor. We 
discuss the sensing principle and present our design of sensor 
coils to balance sensitivity, sensing range, recognition and 
tracking accuracy. Through a series of evaluations, we 
demonstrated that our approach achieved 95.8% real-time 
classification accuracy with 23 daily objects that included 
both conductive and non-conductive objects instrumented 
using low-cost copper tape, as well as a finger. Our approach 
was also able to sufficiently detect a sliding interaction with 
an average error distance of 0.82 mm for all objects, a hinge 
interaction of 1.6° for a credit card, a table knife and an 
instrumented table knife, and the rotation of an instrumented 
bottle cap divided into 8 wedges with an accuracy of 93%. 
The design space of post-touch-screen interaction techniques 
for small wearables and smart IoTs is broad and requires 
additional study. Indutivo contributes to this area by enabling 
users to engage in novel input interactions by detecting, 
recognizing, and sensing the lateral movement of everyday 
conductive objects.  
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